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1.0  Introduction

 

Linear feedback shift registers

 

 (LFSR) derived from primitive polynomials have been used for: 

random bit sequence generation [GOL67], cryptographic applications like stream ciphers 

[BEK82][SCH96][RSA94], error correction and detection codes [PET84][BER84][WIC95], and 

built-in testing for VLSI circuits [BAR87][SAX92][SAX97].   A degree-

 

r polynomial is primitive 

if and only if its period is 2r-1.  The period of a polynomial is the maximum period realized by its 

corresponding LFSR implementation. Figure 1 illustrates that the polynomial x4+x+1 is primitive.  

Like prime numbers, primitive polynomials have the property that they cannot be factored into 

smaller degree polynomials in the defining field.   Polynomials that cannot be factored into 

smaller degree polynomials are called irreducible.  All primitive polynomials are irreducible.   

However, all irreducible polynomials are not primitive.  For example, x4+x3+x2+x+1 is an 

irreducible polynomial but is not primitive (see Figure 2).   If 2r-1 is a prime number (Mersenne 

prime) then all degree-r irreducible polynomials are primitive [GOL67].

A partial list of primitive polynomials up to degree 828 appeared in [ZIE68][ZIE69].  This list has 

been augmented by primitive polynomials up to degree 500 in [BAR90][BAR92]. This 

augmented list was based on the Cunningham Project [BRI88] that involved the factorization of 

2r-1.

+0 0 0 1
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Figure 1.  A Degree-4 Primitive Polynomial
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In [ZIE69], a systematic procedure that generates all degree-r primitive trinomials, given a known 

factorization of 2r-1, is presented.  Trinomials are interesting in that they require only one 

feedback connection with the exclusive-or gate.  However, primitive trinomials do not exist for all 

degrees.  For example, there are no primitive trinomials when r is a multiple of 8 

[GOL67][SWA62].   The published partial list [ZIE68][ZIE69][BAR90][BAR92] of primitive 

polynomials in most application situations may seem adequate.  For example, results in 

[SAX92][SAX97] show that by using primitive polynomials tighter bounds on signature analysis 

aliasing probability are achieved.  These bounds hold good as long as the polynomial is primitive 

and is independent of the type of primitive polynomial used.   Also, in some applications (like 

built-in self test) if the only requirement is that the LFSR generate all possible non-zero patterns 

then it is not important as to what type of primitive polynomial is used.   However, in situations 

where applications demand a greater choice in the selection of primitive polynomials this partial 

list may not be adequate.  Some applications may require a choice in the selection of primitive 

polynomials.  These applications are:

• Cryptography: Some stream ciphers like shift register cascade (e.g., Gollmann Cascade 
[SCH96][RSA94]) appear to have good security properties. A shift register cascade is a set of 
LFSRs connected together in such a way that the behavior of one particular LFSR depends on 
the behavior of the previous LFSRs in the cascade.  This dependent behavior is usually 
achieved by using one LFSR to control the clock (or the enable signal) of the following LFSR.  
The parameters that define the behavior of these stream ciphers are the initial contents and the 
defining primitive polynomials of the LFSRs.   For a given stream cipher architecture, we can 
think of initial contents and the defining polynomials of the LFSRs as keys.   Having algo-
rithms that pick different primitive polynomials for the LFSRs could contribute to increased 
security of the stream ciphers.   For example, the Hughes XPD/KPD stream cipher algorithm 
[SCH96] uses a 61-bit LFSR.  There are about 1024 different primitive polynomials (approved 
by NSA) stored in a table that are key selected for the XPD/KPD. 

There are in fact  = 37, 800, 705, 069, 076, 950 degree-61 primitive polynomials 
not just 1024. The results in this work can algorithmically generate any arbitrary key selected 

+0 0 0 1++ 0 0001

1 0010

2 0100

3 1000

4 1111Period = 5

Figure 2.  A Non-Primitive Degree-4 Irreducible Polynomial

Polynomial x4+x3+x2+x+1
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61-bit primitive polynomial (without the need for any table) in polynomial time.  In order to 
search for more secure stream cipher implementations a greater choice in the selection of prim-
itive polynomials is clearly a requirement.

• Error Detecting/Correcting Codes: Hamming and BCH codes can be constructed using primi-
tive polynomials [PET84][BER84][WIC95].  In order to search for efficient implementations 
of these codes (in terms of area, cycle time, and physical design complexity) it is desirable to 
index through all possible choices of the code-defining primitive polynomials.

• Built-In Self Test: Implementation requirements and physical design constraints may limit the 
allowable sites for feedback connections for some LFSR stages.  In these situations, it may be 
desirable to search for primitive polynomials that meet the requirements imposed by imple-
mentation and physical design constraints.

1.1  Primitive Polynomial Generation Algorithms: A Summary First

This section gives the reader a feel for the complexity associated with the generation of primitive 

polynomials.  Section 2.0 and Section 3.0 present the actual analysis and description of the 

various algorithms.    An algorithm (by Haluk Aydinoglu) that generates all possible primitive 

polynomials by exhaustively verifying the period property appears in [WIC95].  For reference, we 

will call this algorithm PeriodA.  Similar to PeriodA, another unpublished algorithm due to the 

first author (we will call it PeriodS for reference) exhaustively enumerates all feedback 

polynomials† with their respective periods. PeriodS has been used for signature analysis related 

work in [SAX92].  In this work two algorithms, FactorPower and MatrixPower, are derived that 

generate all primitive polynomials. FactorPower is a generalization of the algorithm used in 

[ZIE69].  FactorPower requires the knowledge of factorization of 2r-1.  MatrixPower uses the 

isomorphism between primitive root powers, αt, and powers of matrix, At, to generate all 

primitive polynomials.  Matrix A represents the primitive polynomial whose root is α. 

MatrixPower requires as an input a single degree-r primitive polynomial to generate all degree-r 

primitive polynomials. Techniques of generating all indexing primitive polynoimials (such as 

used in MatrixPower) from a known primitive polynomial are fairly well-known [ALA64].

The average time to generate every new primitive polynomial of degree-r quantifies the 

performance of these algorithms.  The unit for this average time is Secs/Poly and is calculated by 

the total time in seconds to generate all degree-r primitive polynomials over the total number of 

degree-r primitive polynomials.  PeriodA, PeriodS, FactorPower, and MatrixPower were all coded 

in C/C++ language to study their relative performance in terms of the Secs/Poly metric. Table 1 

shows the computation times to generate all primitive polynomials for degrees 10 through 20.  

The columns indicating TotalSecs show the time in seconds to generate the entire list of 

†.  In this paper we define feedback polynomials as those that are monic and have +1 term.  In other words, a feedback polynomial is a monic poly-
nomial without X as a factor.
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polynomials for a given degree by the respective algorithms.  Likewise, the columns indicating 

Secs/Poly show the average time in seconds to generate single primitive polynomials.  Table 1 

illustrates the distinguishing features of these algorithms in terms of computational complexity 

and relative performance.  Section 2.0 and Section 3.0 present both the actual description and the 

derivation of computational complexity for the respective algorithms.

The most practical aspect of FactorPower and MatrixPower is that every new and distinct 

primitive polynomial is generated enumeratively in polynomial-time (O(r4) ~ O(r4 ln r)).  This is 

in contrast to PeriodA and PeriodS that generate every new and distinct primitive polynomial in 

exponential-time (at least O(r2r)).

PeriodA inefficiently simulates the LFSR and recursively indexes through the polynomials and 

therefore it is about eight to ten times slower than PeriodS.  PeriodS for degrees up to 14 is faster 

than FactorPower and for degrees up to 10 is faster than MatrixPower.  It is not surprising that for 

small values of r the exhaustive algorithm is more efficient than the polynomial-time algorithms 

FactorPower and MatrixPower.  The listings of PeriodS and PeriodA programs appear in 

Appendix (Figure 13 and Figure 14).The code for PeriodS is extremely compact and almost 

requires O(1) storage complexity; whereas, both MatrixPower and FactorPower have larger code 

and require at least O(r2) storage.   Therefore for small values of r, the disadvantage of bulky data 

structures in MatrixPower and FactorPower more than offset their polynomial-time advantages 

over PeriodS.

TABLE 1.  Execution Timea Comparison

a.  The computations were done on an upgraded Power Macintosh 8500/120 system (PowerPC 604e 233 Mhz processor upgrade card) with 
176 megabytes of main memory.  The programs were written in C/C++ and compiled using gcc -O2 optimizations.  The operating system 
environment was MkLinux, Developer Release 2.1, Update 5.

PeriodA PeriodS FactorPower MatrixPower

r ϕ(2r-1)/r TotalSecs Secs/Poly TotalSecs Secs/Poly TotalSecs Secs/Poly TotalSecs Secs/Poly

10  60 0.17 0.003 0.04 0.0007 0.21 0.0035 0.05 0.0008

11 176 0.97 0.006 0.17 0.0010 0.36 0.0021 0.10 0.0006

12 144 2.31 0.016 0.42 0.0029 1.59 0.0110 0.13 0.0009

13 630 16.94 0.027 2.08 0.0033 0.16 0.00025 0.40 0.0006

14 756 50.05 0.066 7.02 0.0093 7.24 0.0096 0.84 0.0011

15 1800 216.17 0.120 26.57 0.0148 17.80 0.0099 2.05 0.0011

16 2048 897.43 0.438 102.66 0.0501 54.11 0.0264 4.43 0.0021

17 7710 4681.89 0.607 467.27 0.0606 3.50 0.0005 11.64 0.0015

18 7776 13643.91 1.755 1508.71 0.1940 299.40 0.0385 24.03 0.0039

19 27594 7185.75 0.2604 17.51 0.0006 61.45 0.0022

20 24000 22648.66 0.9437 1892.79 0.0789 124.79 0.0052



© 2004, Saxena and McCluskey 5

The plot for Table 1 data in Figure 3 shows that PeriodS execution time follows O(r2r) 

computation time complexity.  PeriodS becomes impractical for large degrees.  For example, 

PeriodS takes 24 minutes to generate every new degree-30 primitive polynomial whereas 

MatrixPower takes only 0.026 secs to generate every new degree-30 primitive polynomial.

Figure 4 shows the O(r4) execution time complexity of MatrixPower. In general, for odd r the 

primitive polynomial generation algorithms are effectively faster.  This is because for odd r, 

relative to 2r there are effectively more degree-r primitive polynomials.   In other words, primitive 

12 14 16 18 20

0.1

0.2

0.3

0.4

0.5

0.6

secs/poly

degree r

PeriodS

5.0 10-8 r 2r 

Figure 3. Computation Time Complexity for PeriodS Algorithm
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4.0 10-8 r4

Figure 4. Computation Time Complexity for MatrixPower Algorithm
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polynomials are denser for odd r.    For example, the probability of finding a degree-11 primitive  

polynomial by a random search over all degree-11 (there are 1024) feedback polynomials is about 

17% (176/1024, there are 176 degree-11 primitive polynomials); whereas, the probability of 

finding a degree-12 primitive polynomial by a random search of all degree-12 feedback 

polynomials (there are 2048) is only 7% (144/2048, there are 144 degree-12 primitive 

polynomials).

FactorPower is fastest when 2r-1 is prime. This is because all irreducible polynomials are 

primitive when 2r-1 is prime. The complexity of verifying that a polynomial is irreducible is at 

most O(r3) [KNU97].  For Mersenne prime points, r=13, 17, and 19 (in Table 1) FactorPower is 

significantly faster than MatrixPower.  In general, FactorPower computation complexity is O(k r4) 

(Figure 5), where k is the number of distinct prime factors of 2r-1.  A detailed list of factorization 

of 2r-1 appears in [BRI88]. Listing of k for r=10 through 24 is shown in Table 2.

12 14 16 18 20

0.02

0.04

0.06

0.08

secs/poly

degree r

FactorPower

12.0 10-8 k r4

Figure 5. Computation Time Complexity for FactorPower Algorithm
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FactorPower complexity normalized by k is shown in Figure 6. Plots in Figure 5 and Figure 6 

exclude the Mersenne prime points, r=13, 17, and 19.  In general, MatrixPower is faster than 

FactorPower.  However, FactorPower can be used to do generate primitive polynomials with 

special properties.  This is discussed in Section 4.  Section 3 presents the description of PeriodA, 

TABLE 2.  Distinct Prime Factors of 2r-1

r Distinct Factors of 2r-1 k

10 3, 11, 31 3

11 23, 89 2

12 3, 5, 7, 13 4

13 8191 1

14 3, 43, 127 3

15 7, 31, 151 3

16 3, 5, 17, 257 4

17 131071 1

18 3, 7, 19, 73 4

19 524287 1

20 3, 5, 11, 31, 41 5

21 7, 127, 337 3

22 3, 23, 89, 683 4

23 47, 178481 2

24 3, 5, 7, 13, 17, 241 6

12 14 16 18 20

0.005

0.01

0.015

secs/poly

degree r

FactorPower

12.0 10-8 r4

Figure 6.  FactorPower Algorithm Performance Normalized Per Factor

per factor
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PeriodS, FactorPower, and MatrixPower.  Section 2 presents some asymptotic results that are 

necessary to establish the computational complexity of the various primitive polynomial 

generation algorithms. 

2.0  Primitive Polynomial Generation Complexity Analysis: Preliminaries

There are 2r-1 degree-r feedback polynomials.  There are λ(r) = ϕ(2r-1)/r degree-r primitive 

polynomials.  If the degree-r feedback polynomials are indexed in some order then the average 

number of steps required to find the next degree-r primitive polynomial is given by

 (1)

The expression (1) is the reciprocal of the probability of finding a degree-r primitive polynomial 

from an indexing set of degree-r feedback polynomials.   In order to bound the complexity of 

primitive polynomial generation algorithms, an upper bound on the above expression is useful.  In 

other words, we need a lower bound on ϕ(2r-1).  Results from number theory are used in deriving 

and estimating these bounds.

In [HAR85], it is shown that

(2)

An upper bound on the average number of steps to find the next t such that t ⊥ n.

(3)

For certain classes of n (for example n = m!) this upper bound seems reasonable. For example, 

Figure 7 shows the actual value of n/ϕ(n) and its corresponding upper bound for n=m!.

r2r 1–

ϕ 2r 1–( )
-----------------------

lim inf

n ∞→
ϕ n( ) ne

γ–

n( )ln( )ln
-----------------------= γ 0.577... is Euler′s  constant=

lim sup

n ∞→
n

ϕ n( )
----------- e

γ
n( )ln( )ln 1.781... n( )ln( )ln= =
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While the bound appears to be tight for values of n = m!, our interest is in values of n=2r-1.

The average number of steps required to find the next relatively prime t such that t ⊥ 2r-1 is:

 (4)

Using the foregoing results, an upper bound (asymptotic) on average steps to relatively prime t is

(5)

Using the above result the bound on the average number of steps to relatively prime t is O(ln r).   

However,  the actual plot (Figure 8) of  for values of r from 1 to 100 shows that

20 40 60 80 100

2

4

6

8

10 eγ ln(ln(m!)) bound

m!/ϕ(m!)

m

Figure 7.  Bound on Average Number of Steps for n = m!

2r 1–
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2r 1–

ϕ 2r 1–( )
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γ
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2r 1–
ϕ 2r 1–( )
-----------------------
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the average steps is less than 3  (for odd r it is less than 1.25).  The O(ln r) bound is not as tight for 

n=2r-1 and there could in fact be a tighter O(1) upper bound (Figure 9).  In the next section, we 

explore tighter estimates of the average number of steps to relatively prime t.

2.0.1  Average Value Estimation of ϕ(2r-1)

In [APS84] it is shown that

(6)

By substituting (note that this substitution is not valid), x=2r-1, we can heuristically estimate the 

average order of ϕ(2r-1) as

(7)

Generally, ϕ(n), is a an increasing function. Therefore, with probability,

(8)
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Figure 8.  Average Steps to Relatively Prime Number t
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3
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Using this heuristic argument, the average number of steps to relatively prime t appears to be 

bounded above, with probability, by π2/3.  Figure 9 illustrates that the π2/3 bound is reasonably 

tight for values of r up to 100.

Figure 9 empirically suggests that is π2/3 an upper bound on 2r-1/ϕ(2r-1); however, this does not 

last.  Table 3 shows that for r=360, 2r-1/ϕ(2r-1) is 3.39 which is greater than π2/3 ~ 3.29.

While obtaining a tighter bound on 2r-1/ϕ(2r-1) may be a topic of theoretical interest; the practical 

importance of the results in Figure 9 and Table 3 is that the average behavior of 2r-1/ϕ(2r-1) 

appears to be more close to O(1) than O(ln r).  The main result in this section is that the average 

number of steps required to find the next degree-r primitive polynomials from an indexed set of 

degree-r feedback polynomials is between O(r) and O(r ln r). Measurements on actual programs 

for a large range of values of r corroborate this behavior of finding the next degree-r primitive 

TABLE 3.  Some Values of 2r-1/ϕ(2r-1)

r
2r-1/
ϕ(2r-1)

60 2.83645

120 3.02633

180  3.17153

240  3.07437

300 2.88622

360 3.39177

420 3.14824

20 40 60 80 100

2

4

6

eγ ln(r ln(2)) bound

π2/3 = 3.29..
2r-1

ϕ(2r-1)

r

Figure 9.  Bounds on the 2r-1 over ϕ(2r-1)
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polynomial.   All of the plots and calculations of the Euler totient function were done using the 

Mathematica program [WOL92].

3.0  Primitive Polynomial Generation Algorithms: Description and Analysis

3.1  Verifying the Period: Exhaustive Algorithms PeriodA and PeriodS

The most simple way of finding a degree-r primitive polynomial is by simulating the 

corresponding LFSR and verifying that its period is 2r-1.  The algorithm to do this can be 

described in the following steps:

1. Pick a degree-r polynomial Pi(X) from an indexed set {0, 2r-1 -1}

2. Verify the period of Pi(X). If the period equals 2r-1 then print primitive polynomial.

3. Continue while the indexed set lasts.

Both PeriodS and PeriodA programs implement this algorithm. Their listing appears in Appendix 

(Figure 13 and Figure 14 respectively).  PeriodA indexes through the feedback polynomials 

recursively; whereas, PeriodS indexes through the feedback polynomials iteratively. PeriodS uses 

the machine shift operations and implements LFSR in machine registers; whereas, PeriodA 

implements LFSRs as arrays.   These differences make PeriodS more efficient than PeriodA (see 

Table 1). The complexity to verify the period is O(2r).  This is because the complexity of Step 2 in 

the algorithm is influenced by the average period of feedback plynomials.  The average period for 

degree-r polynomials is the sum of periods of all degree-r feedback polynomials divided by 2r-1 

(i.e., the number of degree-r feedback polynomials).  The average period of degree-r feedback 

polynomials appears to be of order O(2r).  Figure 10 shows the plot of average period for degrees 

up to 14.  Also shown in Figure 10 is the plot of 2r-1 to illustrate the O(2r) growth of the average 

period.  The average period for the plot in Figure 10 was calculated using PeriodS algorithm.  The 

authors are not aware of a mathematical proof† that shows that the average period of degree-r 

feedback polynomials is O(2r).   This paper does not investigate if such a proof exists because the 

main focus here is on FactorPower and MatrixPower algorithms.  Also, there is enough 

experimental evidence that suggests that the average period is O(2r).   However, interested readers 

might want to prove this.

†.  It may be sufficient to prove that the average period of degree-r square-free (defined later) feedback polynomials is O(2r)
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In the previous section, we saw that the average number of steps to find the next primitive 

polynomial is at most O(r ln r). Therefore, for PeriodA and PeriodS programs, the overall 

complexity to generate every new primitive polynomial  is O(r ln r) x O(2r) = O(r ln r 2r). This is 

corroborated by the Secs/Poly plot for the PeriodS program in Figure 3.

3.2  Factorization of 2r-1: Algorithm FactorPower

Exhaustive algorithms, PeriodA and PeriodS, become impractical for large values of r.  Therefore, 

more efficient algorithms are desirable.  If the factorization of 2r-1 is known then degree-r 

primitive polynomials can be generated in polynomial time.   However, factorization of 2r-1 is in 

itself at most O(2r/2) complexity problem. Luckily, factorization of 2r-1 has been done for 

reasonably large values of r [BRI88].  Primitive polynomial generation algorithms can benefit 

from this work.   In this section, we generalize the primitive trinomial generation algorithm 

[ZIE69] to generate arbitrary primitive polynomials.  We call this algorithm FactorPower to 

reflect the basis of the algorithm.   FactorPower has the following steps:

  1. Start with a known factorization of 2r-1.  Let , where all wi are 
greater than 0 and qi are distinct primes.

  2. Pick a degree-r feedback polynomial, Pj(X), from an indexed set of 2r-1 degree-r feedback 
polynomials.  The indexing can be done by assigning binary coefficients cr-1, cr-2, ..., c1 for 
the feedback polynomial . There are 2r-1 distinct 
assignments.
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Figure 10. Average Period versus Degree-r
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  3. Verify if Pj(X) is a square-free polynomial.  That is Pj(X) cannot be written in the form 
V(X)2W(X).  If Pj(X) is square-free then go to Step 4 else go to Step 7.

  4. Verify if Pj(X) is irreducible. If not irreducible then go to Step 7 else go to Step 5.

  5. If 2r-1 is prime then print primitive polynomial and go to Step 7 else go to Step 6.

  6. Verify if Pj(X) primitive.  This is done as follows: Let t = 2r-1/qi.  Check if Pj(X) divides 
Xt+1 for all k distinct factors qi.   If Pj(X) does not divide Xt+1 for all k distinct factors qi 
then Pj(X) is primitive. Go to Step 7.

  7. Continue while the indexed set lasts.

3.2.1  Square-Free Polynomial Test

Step 3 is visited by all feedback polynomials. The complexity of verifying that a feedback 

polynomial is square-free is O(r2).  A quick way of proving that Pj(X) is square-free is to show 

that the greatest common divisor of Pj(X) and the derivative of Pj(X) is 1.  This is described in 

[KNU97].  The function in FactorPower that implements the test for square-free polynomial has 

O(r2) computational complexity.  There are at least 29*2r/96 square-free polynomials.  Theorem 1 

proves this.

Theorem 1: There are at least (29/96) 2r degree-r square-free polynomials.

Proof: In order to derive a lower bound on the number of degree-r squarefree polynomials, η(r), 

we derive an upper bound on the number of degree-r polynomials, ρ(r), with square factors.  Let 

P(X)=V(X)2W(X).  Let Sd represent the set of polynomials V(X)2W(X) such that the degree of V(X) 

is d.  The cardinality of S1, |S1|, is 2r-3.  This is because for d=1, V(X)=1+X is the only irreducible 

polynomial and therfore the number of degree-(r-2) feedback polynomials, W(X), would be 2r-3. 

Likewise, for d=2 the only degree-2 irreducible polynomial is, V(X)=1+X+X2.  So |S2| = 2r-5.    In 

general, the number of degree-d irreducible polynomials V(X) is bounded above by (2d-1)/d.  

Therfore,  |Sd| is bounded above by 2r-2d-1(2d-1)/d.  Note that the sets Sj are not disjoint.  This 

implies that the sum of the cardinalities of Sj will be an upperbound on the number of degree-r 

polynomials with square factors. Also degree-d cannot exceed floor of r/2.

Simplifying, we have

ρ r( ) Sd
d 1=

r
2
---

∑ Sd
d 1=

r

∑ 2r 3– 2r 5– 2d 1–
d

--------------2r 2d– 1–

d 3=

r

∑+ + 2r 3– 2r 5– 2r d– 1–

3
------------------

d 3=

r

∑+ +< < < <
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Using the upperbound on ρ(r) we have

(Q.E.D)

Table 4 lists the actual values, η(r), with the lower bound.  The actual values of η(r) were 

calculated by the C++ program that implemented the FactorPower algorithm.  Observation of the 

actual values in Table 4 suggests that 

(9)

Theorem 2 proves that equation (9) is indeed the closed-form formula for η(r).

Theorem 2: There are   degree-r square-free feedback polynomials.

Proof: Let ψ(r) be the number of degree-r irreducible polynomials.  From Theorem 3.32 in 

[BER84] we know that

TABLE 4.  Lower Bound and the Actual Number of Square-free Polynomials

r
Lower Bound

(29/96) 2r
Actual 
η(r)

10 309. 341

11 618. 683

12 1237. 1365

13 2474. 2731

14 4949. 5461

15 9898. 10923

16 19797. 21845

17 39594. 43691

18 79189. 87381

19 158379. 174763

20 316757. 349525

ρ r( ) 2r 3– 2r 5– 2r d– 1–

3
------------------

d 3=

r

∑+ +< 2r 3– 2r 5– 2r 3– 1–
3

--------------------+ +
4
3
---2r 3– 2r 5– 1

3
---–+= =

η r( ) 2r 1–>
4
3
---2r 3– 2r 5– 1

3
---–+ 

 – 2r 1
2
--- 4

24
------– 1

32
------– 

 >
29
96
------2r=

η r( ) 2r 1–
3

--------------=

η r( ) 2r 1–
3

--------------=
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(10)

Note that for r>1 all irreducible polynomials are feedback polynomials. However, for r=1, 

ψ(1)=2, there are two irreducible polynomials X and X+1.   We can rewrite the above equation as

(11)

The generating function for all square-free feedback polynomials is 

(12)

From equations (11) and (12) we have

(13)

The right-hand side has the same structure as equation (11). Therefore,

(14)

Solving for f(z)

(15)

The coeffecient of zr in f(z) will be the number of degree-r square-free feedback polynomials, 

η(r).  Taking the coefficient of zr in f(z)  (for r>0)

(Q.E.D)

3.2.2  Irreducible and Primitive Polynomial Tests

In Step 4, irreducibility of degree-r polynomial is tested using Berlekamp’s [BER84] factorization 

algorithm.  The complexity of verifying irreducibility of a degree-r polynomial Pj(X) is O(r3) 

[KNU97]. Step 4 is visited by all square-free polynomials.  From Theorem 2 we know that the 

1
1 2z–
--------------

1
1 zm–
-------------- 
  ψ m( )

m 1=

∞

∏=

1 z–( )2

1 2z–
------------------

1
1 zm–
-------------- 
  ψ m( )

m 2=

∞

∏=

f z( ) 1 z+( ) 1 zm+( )ψ m( )

m 2=

∞

∏=

f z( ) 1 2z–( )
1 z–( )2 1 z+( )

----------------------------------- 1 zm+( )ψ m( )

m 2=

∞

∏ 1 zm–( )ψ m( )
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∞
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3 1 z+( )
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3
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3
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number of times Step 4 is visited is O(2r). Step 5 is O(1) complexity because with a known 

factorization of 2r-1 it is trivial to determine the primality.  Step 5 is visited by all degree-r 

irreducible polynomials.  In Step 6, verifying that Pj(X) does not divide Xt+1 is O(r4).   The 

approach used by FactorPower algorithm to show that Pj(X) does not divide Xt+1 is as follows:

• Construct a cononical matrix A representing Pj(X).

• Compute At. 

• If At is not an identity matrix then Pj(X) does not divide Xt+1.

Computation of At can be done by successive squaring and additions of matrix A.  The term t can 

be represented by a r-bit number.  Matrix multiplication (for squaring) takes O(r3) steps and  for 

At , O(r) squaring operations are needed.  Therefore the computation complexity of At is O(r4). 

Since this has to done for all distinct factors of 2r-1, the complexity for Step 5 is k x O(r4) = 

O(kr4).   Step 6 is visited by all feedback polynomials that are irreducible.  The total computation 

time to generate all primitive polynomials is 2r-1x O(r2) + η(r) x O(r3)  + ψ(r) x O(k r4).  ψ(r) is 

the number of degree-r irreducible polynomials.  The computation time for every primitive 

polynomial would then be (2r-1x O(r2) + η(r) x O(r3)  + ψ(r) x O(k r4))/λ(r).  λ(r) is the number of 

degree-r primitive polynomials. From the results in Section 2.0 it follows that λ(r) is  at least  

O((2r-1)/(r  ln r)).  ψ(r) is O((2r-1)/r) because:

(16)

It follows that  2r-1/λ(r), η(r)/λ(r), and ψ(r)/λ(r) are O(r ln r), O(r ln r), and O( ln r) respectively.  

Therefore, the computation time to generate every new primitive polynomial using FactorPower is 

O(r ln r)xO(r2) + O(r ln r)xO(r3) +O(1)xO(k r4) =  O(r4 ln r) ~ O(k r4  ln r).  This is corroborated 

by plots of actual measurements in Figure 5.

When 2r-1 is prime, Step 5 is not needed because all irreducible polynomials are primitive.  

Therefore, the computational time to generate every new primitive polynomial when 2r-1 is prime 

is  O(r4 ln r). It was for this reason that Figure 5 excluded the Mersenne prime points.  Table 5 has 

secs/poly data for the listed Mersenne prime polynomials.  For r=61, the measured secs/poly is for 

100 primitive polynomials. For other degrees (r=13, 17, and 19) all primitive polynomials were 

generated by FactorPower.  The term ln r  in the complexity analysis can be practically dropped 

ψ r( )
1
r
--- 2dµ

r
d
--- 
 

d r
∑=
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for practical range of r as is suggested by data presented in  Section 2.0. The second column in 

Table 5 shows that the measured values approximately track O(r4 ).

Readers should note that the coefficients for r3 and r4 in the empirical formula could vary (and in 

fact will increase) for large values of r because of cache and memory system effects.

3.3  Primitive Root Power and Matrix Power Isomorphism:  MatrixPower Algorithm

Theorem 3 is the basis for the MatrixPower algorithm.

Theorem 3: If A is a r x r GF(2) matrix representation of a degree-r primitive polynomial P(X) 

then the set of characteristic polynomials in GF(2) of At for all t relatively prime to 2r-1 is 

identical to the set of all degree-r primitive polynomials.

Proof: Let α be the primitive element in GF(2r) generated by the primitive polynomial P(X).  

Since A is a matrix representation of P(X) there is isomorphism between the matrix powers I, A, 

A2, ... and the GF(2r) elements 1, α, α2, ...

The following facts are true:

• Since A represents the primitive polynomial P(X) the order of A is 2r-1.

• For every t relatively prime to 2r-1 the order of At is 2r-1.  Also, the characteristic polynomial 
H(X) of At is primitive. 

• αt  corresponds to At and is a primitive root of H(X) in GF(2r).

By selecting all t relatively prime to 2r-1, all primitive elements of GF(2r) are exhausted.  

Therefore all primitive polynomials in GF(2) are generated by taking the characteristic 

polynomials of At. Q.E.D

Note that Theorem 3 generates r repetitions of each primitive polynomial in the set of all degree-r 

primitive polynomials.  This is because by selecting all t relatively prime to 2r-1, all conjugate 

TABLE 5.  FactorPower Computational Complexity when 2r-1 is Prime

r

Empirical Formula

9.153x10-8 r3+5.788x10-11r4

Measured on 
FactorPower

secs/poly

13 0.00020274 0.000253968

17 0.00045452 0.000453956

19 0.00063535 0.000634558

61 0.02157697 0.025400000
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roots [5] are also considered.   For example,

 

are r primitive roots of the same primitive polynomial.  By selecting only one member from the 

set of r conjugate roots (all exponents of α are mod 2r-1) repetitions can be avoided. 

The number of t that are relatively prime to 2r-1 is the Euler’s totient function ϕ(2r-1).  

By selecting only one out of the r conjugate roots,  ϕ(2r-1)/r distinct degree-r primitive 

polynomials are generated.  Another important observation is that by Theorem 3 we can generate 

all primitive polynomials from any known primitive polynomial.

MatrixPower program implements the following algorithm:

1. Pick a known degree-r primitive polynomial P(X).

2. Construct canonical matrix A representing P(X). Compute A2 and store in memory.

3. Pick t from an indexed set. Compute At.

4. Check if conjugates of t already selected. If conjugate already selected then go to Step 7 else 
go to Step 5.

5. Verify if t is relatively prime to 2r-1. If t relatively prime go to Step 6 else go to Step 7.

6. Compute and print the characteristic polynomial of At 

7. Continue while the indexed set lasts.

3.3.1  Complexity Analysis of MatrixPower

Step 1 is the input to the MatrixPower algorithm.  The canonical matrix A for Step 2 requires 

O(r2) storage.  The index t is selected from the set of odd numbers, {2m+1: 0≤m<2r-1}, in 

increasing order.  This automatically eliminates all conjugate roots that have even powers of α.  

Also, selecting t in increasing order allows accumulating the powers of matrix A so that the new 

matrix power At is obtained by multiplying previously stored At-2 and A2.  The implies that the 

Step 3 computation complexity is O(r3).  In Step 4, MatrixPower uses a simple procedure to 

discard conjugate roots by selecting the smallest exponent of α.  This is done as follows: for any 

selected t from Step 3, new exponents 2t mod (2r-1), 22t mod (2r-1), ...,  2r-1t mod (2r-1) are 

generated.  If any of these exponents are less than t then t is discarded from selection in Step 4.  

Note that these exponents are derived from successive left cyclic shifts of an r-bit representation 

of t.   This process ensures only one conjugate root is selected.  The complexity of Step 4 therefore 

is O(r).  The complexity to verify if t is relatively prime to 2r-1 in Step 5 is no worse than O(r lnr).  

αt α2t … α2r 1– t, , ,
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Computation of characteristic polynomial of the precomputed matrix At in Step 6 is no worse than 

O(r3) [FAD63].   Steps 3 and 4 are visited  2r-1 times (for all odd t).   Step 5 is visited O(2r/r) 

times.  Step 6 is visited exactly λ(r) times.  Total computation time to generate all primitive 

polynomials is of order

Follows that the computation time per primitive polynomial is

The performance results presented in Figure 4 corroborate the O(r4 ln r) complexity of 

MatrixPower.   Table 6 illustrates the generation of all degree 5 primitive polynomials from the 

primitive polynomial x5+x4+x3+x2+1 by using MatrixPower.

Note that if repetition of primitive polynomials is allowed then the complexity of generating 

primitive polynomials using MatrixPower would be O(r3 ln r).   This is particularly advantageous 

when r is very large.

TABLE 6.  Matrix Power Generation of Degree 5 Primitive Polynomials

t 1 3 5 7 11 15

At

Characteristic 
Polynomial

X5+X4+X3+X2+1 X5+X4+X2+X+1 X5+X3+1 X5+X4+X3+X+1 X5+X2+1 X5+X3+X2+X+1

2r 1– O r3( ) 2r 1– O r( ) O
2r

r
----- 
 O r rln( ) λ r( )O r3( )+ + +

2r 1– O r3( ) 2r 1– O r( ) O
2r

r
----- 
 O r rln( ) λ r( )O r3( )+ + +

λ r( )
------------------------------------------------------------------------------------------------------------------------------------ O r4 rln( )=

0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

0 0 1 1 0
0 0 0 1 1
0 0 1 1 1
1 0 1 0 1
0 1 1 0 0

1 1 0 0 1
0 1 1 0 0
1 1 1 1 1
1 0 1 1 0
1 0 0 1 0

0 0 1 0 0
1 0 0 1 0
1 1 1 0 1
1 1 0 1 0
0 1 0 0 1

0 1 1 1 1
0 0 1 1 1
1 1 1 0 0
0 0 0 0 1
1 1 1 1 1

1 1 0 1 1
1 1 1 0 1
0 0 1 0 1
1 1 0 0 1
1 0 1 1 1
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4.0  PeriodS, FactorPower, and MatrixPower Applications

There are situations where the choice of having many primitive polynomials enhances the 

design’s functionality or performance.  In these situations, primitive polynomial generation 

algorithms find application.  Some of the design cases previously mentioned in Section 1.0 are:

• Error Detection and Correction (EDAC) code designs.

• Key generation in cryptography.

• Design for Testability

4.1  EDAC Designs- Using PeriodS

EDAC designs that are capable of correcting more than single bit errors or detecting more than 

five bit errors are often based on BCH polynomials [5-7].  In general, a BCH polynomial is 

formed by using a primitive polynomial as one of its factors.  BCH code designs are, generally, 

implemented using sequential encoders and  decoders.  The complexity of serial encoders and 

decoders is largely independent of the type of primitive polynomial used.  However, if the 

information bits a bounded by some practical value it is possible to implement parallel EDAC 

encoder and decoder designs.  Parallel encoders and decoders allow single cycle encoding and 

decoding functionality.  The hardware complexity, as measured in terms of area and cycle time, of 

parallel EDAC encoders and decoders depends on the type of primitive polynomial used.    

Parallel encoders and decoders for double-error correcting EDAC designs have been used in 

[SAX95][SAX96].  By using an appropriate primitive primitive polynomial double-error 

correcting EDAC designs can be optimized.

In a related research [SAX98], the authors have developed synthesis techniques that use PeriodS 

algorithm to optimize parallel EDAC designs. For example, Figure 11 shows the percentage 

improvement in logic gate count for the various double-error correcting EDAC code designs.  

Results show reduction up to 14% in gate counts.  Each of these designs is obtained in less than 2 

minutes. The value of r  up to 9 are sufficient to support information bits up to length 256. PeriodS 

algorithm is used because it is the fastest algorithm for this range of values of r .  For larger values 

of r either MatrixPower or FactorPower could be used; however, as the code length increases 

parallel encoder and decoder designs become less practical.
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4.2  Key Generation in Stream Ciphers- Using MatrixPower

In cryptography, stream ciphers [BEK82][SCH96][RSA94] have been used to encrypt and 

decrypt messages.  Most practical stream cipher designs use LFSRs or their variants.  In general, 

LFSRs in stream-ciphers are maximal-length and therfore are implmentations of primitive 

polynomials.

Figure 11.  Double Error Correcting EDAC Design Performance Improvement
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Some stream ciphers like shift register cascade (Gollmann Cascade [SCH96][RSA94], see 

Figure 12) appear to have good security properties. As was discussed in Section 1.0 the 

parameters that define the behavior of these stream ciphers are the initial contents and the defining 

primitive polynomials of the LFSRs.   For a given stream cipher architecture, we can think of 

initial contents and the defining polynomials of the LFSRs as keys.   Having algorithms that pick 

different primitive polynomials for the LFSRs could contribute to increased security of the stream 

ciphers.   For the Hughes XPD/KPD stream cipher algorithm [SCH96] that uses a 61-bit LFSR, 

both MatrixPower and Factor Power can generate degree-61 primitive polynomials every 0.025 

secs (see Table 5).  In general order to search for more secure stream cipher implementations a 

greater choice in the selection of primitive polynomials is clearly a requirement.  

Importance of MatrixPower (for large values of r and 2r-1 is not prime) Key generation registry.

Following is a small list of degree 300 primitive polynomials generated by MatrixPower using the 

primitive polynomial x300+x7+1 listed in [BAR87]:

X300+X126+X110+X71+X55+X39+X23+X7+1

X300+X253+X206+X130+X83+X36+X18+X7+1

X300+X236+X209+X172+X145+X118+X108+X81+X54+X44+X17+X7+1

X300+X198+X147+X128+X83+X45+X32+X26+X13+X7+1

X300+X244+X211+X155+X132+X109+X99+X86+X76+X43+X33+X30+X10+X7+1

X300+X245+X196+X190+X184+X141+X129+X74+X68+X49+X31+X25+X13+X7+1

X300+X281+X262+X224+X205+X148+X144+X129+X110+X106+X11+X7+1

X300+X238+X228+X119+X114+X104+X94+X27+X12+X7+1

X300+X265+X219+X195+X184+X173+X149+X136+X103+X92+X90+X68+X55+X46+X44+X20+X9+X7+1

X300+X199+X194 +X189+X184+X126+X121+X98+X88+X78 +X73 +X55+X40+X35+X20+X15+X7+X5+1

X300+X238+X187+X176+X170+X125+X102+X74+X68+X63+X57+X52+X51+X40+X35+X34+X17+X12+X7+X6+1

X300+X259+X218+X203+X190+X175+X149+X147+X136+X134+X119+X91+X67+X63+X52+X50+X39+X35+X22+X11+X9+X7+1

5.0  Summary

Table summarizes the computation complexity of PeriodS, FactorPower, and MatrixPower 

algorithms. 

TABLE 7.  Summary of Complexity

Algorithm Computation Storage Requirements

PeriodS O(r ln r 2r) O(r) None.

MatrixPower O(r4) ~ O(r4 ln r) O(r2) Needs a known degree-r primitive polynomial. 

FactorPower O(r4) ~ O(k r4 ln r) O(r2) Needs factorization of 2r-1.
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An extremely fast algorithm called MatrixPower is proposed that generates all degree-r primitive 

polynomials from a known degree-r primitive polynomial.   Such a generation technique can be 

gainfully employed in applications like: random pattern generation, cryptography, error correcting 

and detecting codes, and built-in testing for VLSI circuits.
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Appendix

/*
This program prints out all primitive polynomials of a given degree r.
Usage is: period <degree_of_poly>
*/

#include <stdio.h>
unsigned int poly;
unsigned int mask;

main(argc,argv)
int argc;
char **argv;
{
 unsigned int r,i,j,limit,Lc;
 extern unsigned int mask,poly;
 if (argc<2)
 {
  printf("Usage:period <degree_of_poly>\n");
  exit(1);
 }
 print_primitive=1;
 r = (unsigned int) atoi(argv [1]);
 mask = 1;
 for (i=1; i < r; i++) {
   mask = 2*mask;
  }
  limit = 2*mask;
for (i=1; i < limit; i=i+2) {
   poly = i;
   j = pred(1,0);
   Lc = 1;
  while (pred(1,j) != 0 ) {
   Lc++;
   j = pred(0,j);
  }
  if (Lc == (limit-1))
   printf("%u\n", i);
 }
}
pred(x,y)
unsigned int x,y;
{
extern unsigned int poly,mask;
  if ( (y & mask) > 0 )
  {
   if (x == 1)
    return((y << 1) & (2*mask-1));
   else
    return(((y << 1) ^ poly) & (2*mask-1));
  } 
  else
  {
   if (x == 0)
    return((y << 1) & (2*mask-1));
   else
    return(((y << 1) ^ poly) & (2*mask-1));
  } 
}

Figure 13.  Listing of PeriodS Algorithm
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/*
  The program prints all primitive polynomials of a given degree. The usage is:
  program_name <degree_of_poly>
*/

#define N 32
#include <stdio.h>
int i,n,xx, degree; char d[N];
void see () {
  for (i=n; i>=0; i--) printf ("%c",d[i]+'0');
  printf("\n");
}
char s[N],t,j,f; unsigned long c,max;

void visit () {
  for (i=0;i<n;i++) s[i]=1; c=0;
  do
    {c++;
    for (i=t=0;i<n;i++)
      t = (t^(s[i]&d[i]));
    for (i=0;i<n-1;i++)
      s[i]=s[i+1];
    s[n-1]=t;
    for (i=f=0;i<n;i++)
      if (!s[i]) {f=1; break;}
    }
  while (f);
  if (c==max) see ();
}

void gp (l) char l; {
   if (!l) visit();
   else {
     d[l] = 0; gp (l-1);
     d[l] = 1; gp (l-1);
   }
}

void gc (l,rw) char l, rw; {
  char q;
  if (rw==2) { visit(); return;}
  for (q=1;q>=rw-2;q--) {
    d[q]=1; gc(q-1,rw-1);d[q]=0;
  }
}

void main(int argc, char *argv[]) {
  printf("\n");
  degree = atoi(argv[1]);
  for (n=degree;n<=degree;n++) {printf("%d\n",n);
  for (xx=max=1;xx<=n;xx++) max=2*max; max--;
  d[n] = d[0] = 1;
  gp(n-1); /* use gp(n-1) if all prim polys are desired */
  printf("\n");
  }
}

Figure 14.  Listing of PeriodA Algorithm


